
S E L E C T I V I T Y  OF  AN A C O U S T I C  

IN A T U R B U L E N T  S T R E A M  

E. B. K u d a s h e v  

DETECTOR 

UDC 534.641:532.517.4 

Relationships obtained for piezoelectr ic  sys tems a re  extended to an a rb i t r a ry  kind of e lec-  
t roacous t ic  t ransducers .  Expressions a re  obtained for the pulsation of t r ansducers  with an 
a rb i t r a ry  distribution of oscil lat ions over  the detector  surface.  

The determinat ion of the s tat is t ical  cha rac te r i s t i c s  of turbulent p ressu re  fields on the surface of 
elast ic  s t ruc tures  (the s p a c e - t i m e  corre la t ion  function R (a, T) and the mutual frequency spec t rum over 
the space of the turbulent p re s su re  pulsations F (~, co)) is performed by miniature p ressu re  detectors ,  
e lec t roacoust ic  transducers," mounted at minimal  spatial separat ions flush with the surface  around which 
the turbulent s t r eam flows. 

Evidently, only an "idealized" point detector  will r ecord  the p res su re  pulsation without distortion. 
Acoust ic  microde tec tors ,  known at this t ime, cause a sys temat ic  e r r o r  in measur ing  turbulent p ressu re  
pulsations, whose interval  of coherence is considerably less  than the geometr ic  size of the t ransducers ,  
because of the mutual cancellation of the f ine-sca le  pulsations at the sensitive detector  surface.  To a 
cer tain degree,  an analogous situation occurs  in the measurement  of the acoust ic  p r e s s u r e  when the detec-  
tor size and the acoust ic  wavelength in the medium agree:  the e r r o r  because of in ter ference  between the 
incident and diffracted waves on the detector  surface  should be taken into account in a broad frequency 
range. 

Experimental  investigations of the s tat is t ical  s t ruc ture  of a turbulent s t r eam have at t racted the a t -  
tention of r e s e a r c h e r s  to questions of the acoust ic  metro logy of turbulence [1-9]. We have introduced this 
special  designation to combine the diverse  effects of the geometr ic  dimensions and the shape and or ienta-  
tion of the acoust ic  detector  on its sensi t ivi ty to turbulent p re s su re  pulsations. The change in sensitivity 
of an acoust ic  detector  in a turbulent s t r eam [2, 6] is determined by the process  of shaping the e lectr ical  
output of the t ransducer  under condi t ions  of incoherent  detection of the turbulent pulsations, i.e., the ener -  
getic summation of the e lect r ical  signals originating in the detector under the effect of "vor t ices"  being 

propagated along it. 

The e lec t romechanica l  conversion of turbulent p r e s su re  pulsations by a piezoelectr ic  detector has 
been investigated ear l ie r  [1]. For  the acoust ic  metro logy of turbulence it is interest ing to extend the r e -  
sults obtained to an a r b i t r a r y  mechanism of e lectromechanieal  convers ion and to investigate the influence 
of s t ruc tura l  fac tors  on the operation of the detector  in a s t ream.  

Let us wri te  down the initial relat ionship permit t ing formulation of the problem of distort ion of the 
spect ra l  density of turbulent pulsations in t e rms  of the sensitivity of an acoust ic  detector [1]: 

Pobs (~0) ,/2 
- -  ( 1 )  

2 
Ptr (o) Vsf 

The "field" sensit ivity of a detector  7 s f  can be found experimental ly  in the field of a pIane t ravel ing sound 
wave on the axis of the direct ivi ty  charac ter i s t ic .  The detector  sensit ivity in the s t r eam 7T is determined 
by means the formula [6] 
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Fig. i. Frequency dependence of the eoefficien~ of longitudinal selectivity [dashed line) flexible 
de rector ; solid line) piston detector]. 

Fig. 2. Frequency dependence of the coefficient of transverse selectivity (notation of the curves 
is the same as in Fig. I). 

Transforming (I) 

~ _  u~(~0) 
Ptr (o) 

V 2 Usf (0) sf 

(2) 

(3) 

we find that in order to determine the pulsation sensitivity of an acoustic detector the field of electrical 
signals U (x, w) at an arbitrary point of the detector surface in the stream should be examined, and then 
passage should be made in the customary manner to the spectral density of the electrical output U T (co). 

The electrical signal developed by the transducer in a plane sound wave field is known 

Usf(O) = ( Zd_Nt:  )~ 
~ Zmech eq �9 

(4) 

The relationship (4) is valid in the frequency domain far from transducer resonance. An energy source for 
the transducer is the pressure field with the motive force Feq: 

Feq = P (,..0) Ss~ f (5) 

f (x) dx. Ssurf= ! (6) 

The function f(x) defines the given sensitivity distribution over the detector surface S. 

When recording turbulent noise only the generalized perturbation Feq , which becomes a random func- 
tion of the coordinates and time, changes in (4), and we utilize the connection between the input (Feq) and 
output (vibration) spectra of a linear system to determine it. Drawing upon the expression for plate vibra- 
tions in a stream [I], we obtain for the generalized perturbation after transformation 

r'eq (x, co) = f(x) ~ p~(x o, o~) f (Xo) dx o. (7) 

Substituting (7) into (4) affords the possibility of finding the field of the electrical signal at an arbitrary point 
x of the detector surface 
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F i g .  3. F r e q u e n c y  d e p e n d e n c e  of the p u l s a t i o n  s e n s i t i v i t y  of a s q u a r e  d e t e c t o r  (notat ion of the c u r v e s  
the s a m e  a s  in F i g .  1). 

F i g .  4. F r e q u e n c y  d e p e n d e n c e  of the p u l s a t i o n  s e n s i t i v i t y  of  a r e c t a n g u l a r  d e t e c t o r  wi th  5 : 1 s ide  r a t i o  
and the d e t e c t o r  o r i e n t e d  a c r o s s  (A) and a long  (B) the s t r e a m  (notat ion of the c u r v e s  the s a m e  as  in 
F i g .  1). 

U T (x, to) = Z e l  N[ (x) ~ PT (x0, to) f(x0) dx0 ( 8) 
z~-mech d 

S 

when  i t  i s  e x c i t e d  a t  a poin t  x 0 by the  t u r b u l e n t  p r e s s u r e  p u l s a t i o n s  PT(X0, co). 

Shaping  of the  e l e c t r i c a l  output  of an  a c o u s t i c  d e t e c t o r  in  a t u r b u l e n t  s t r e a m  r e c a l l s  the  p r o c e s s  
of s p a t i a l  f i l t r a t i o n  in  the  f o r m a t i o n  of an  i m a g e  in  op t i c s  [10], and i s  def ined  by the  s p a t i a l  c o h e r e n c e  of the  
e l e c t r i c a l  s i g n a l s  (8). Ev iden t ly ,  we should  t u r n  to the  m u t u a l  c o r r e l a t i o n  of the  t u r b u l e n t  p r e s s u r e  p u l s a -  
t i ons  in  o r d e r  to  f ind the  t o t a l  e l e c t r i c a l  output  of the  d e t e c t o r .  

The  m u t u a l  f r e q u e n c y  s p e c t r u m  o v e r  s p a c e  F (x 0 - x~, co) i s  d e t e r m i n e d  e x p e r i m e n t a l l y  in  a e r o -  and 
h y d r o d y n a m i c  wind tunne l s  [11]: 

F (x o - -  x o, to) = P (to) exp ( - -  a ] x o ~ x o I - -  c [ go - -  go I ) cos b (x o - -  :Co), 
(9) 

a = 0.087b; c =  0.557b; b = to/V~. 

L e t  us  f o r m  the  m u t u a l  s p e c t r u m  Fu(X,  xt ,  co) of the  e l e c t r i c a l  s i g n a l s  a t  t he  po in ts  x and x 1 u n d e r  the  e f fec t  
of p u l s a t i o n s  a t  the  po in t s  x 0 and x~; t hen  deno t ing  the  t i m e  a v e r a g e  by a b a r ,  we obta in :  

rc,(x, x. to)= u~ (x, to)U~(x, co) 

= ( Z~l N)~ f(x) f(xO t',f r (Xo- x o, to) i(Xo)f (x o) dxo,%. 
\ Zmech 'ss' 

(lO) 

A v e r a g i n g  the  e x p r e s s i o n  ob ta ined  o v e r  the  d e t e c t i n g  s u r f a c e ,  s u m m i n g  o v e r  a l l  po in t s  of o b s e r v a t i o n ,  x 
and xl ,  we  f ind the  s p e c t r a l  d e n s i t y  of the  to ta l  e l e c t r i c a l  output  of the  a c o u s t i c  d e t e c t o r  in the  s t r e a m  

uT(to) = ,I.f ru(x, x .  to)dxdx . I1 t 
S S  ' 

A f t e r  s u b s t i t u t i n g  (9) and (10) in to  (11), and t ak ing  a c c o u n t  of the  o r t h o n o r m a l i z a t i o n  cond i t i on  of the  o s -  
c i l l a t i o n s  f(x), we  obta in  

U,(to)= ( ze-1 N)~ (12) 
\ Zmech 
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Equating (12) and (4), taMng account of (5) and (6), we find that the dimensionless functions go(a) and ~0(~) 

in (12) define the selectivity of the detector in the stream. The coefficients of longitudinal go(a) and trans- 

verse g0(e) selectivity for a rectangular detector with sides L X and Ly are: 

L x L x 

1 
(a) = , ~  exp ( - -  a I xo - -  x; 1) cos b (x o --  x'o) f (xo) f (xo) dxodx ;, q~ 

" / ~ Y X  
0 0 

Lg Lg 

qD(c)=--~-2v S~exp(--c]Yo--Yo]>[(Yo)[(Yo)dYodYo, 
0 0 

a = aL~; c = cL~. (13) 

The distribution function of the oscillations f(x) takes account of the influence of the structural factors; for 

real detectors it should be determined experimentally, by a miniature accelerometer, for example. 

Let us simplify the expressions for the selectivity coefficients (i:~) by passing to the variable ~ = Ix 0 

-x~[. After evaluation of the inner integrals with respect to the variable x0, we obtain: 

L x 

rp (a) = 5 exp (-- aex) cos bexO (~x) de~, 
0 

(14) 
Ly 

q) (7) = j' exp ( - -  ce,j) O (%) de,,. 
0 

T h e  f u n c t i o n s  | (~) a r e  c a l l e d  the  s p a t i a l  c o n v o l u t i o n  of the  s h a p e s  of t he  o s c i l l a t i o n s ,  w h i c h  a r e  f o r  h i n g e d  

c o n d i t i o n s  on  the  c o n t o u r  

0 ( 8 ) - -  L--e a I a (15) 
- -  cos - -  ~ + sin - -  e. 

L 2 L aL L 

After substitution of (15) into (14) and simple calculations, we obtain for the coefficient of transverse 

selectivity 

c +  1 + e - r  (a 2 - c  2 ) (e -7@ 1)1 
(c) 2 cp u + :,~ ' + ( ~  + a2) ~ j �9 (16) 

The expression for the coefficient of longitudinal selectivity is awkward, and is not presented here. In the 

particular case of a piston-type detector, there is no distribution of oscillations if(x) - I) and (13)-(14) go 

over into the Corcos formula [3]. 

Shown in Figs. 1 and 2 are the frequency dependences of the coefficients of longitudinal and trans- 

verse selectivity. It is interesting to note that a piston-type detector manifests greater selectivity in a 

stream. It is seen that the selectivity drops as the detector size or the frequency of analysis grows (cancel- 

lation of the fine-scale pulsations). 

After subs,tituting (4) and (12) into (3), we find the pulsation sensitivity of an acoustic detector 

y2 T : -  y~l~2qo (a) 9 (c). (17) 

The coefficient G equals the ratio between the real and equivalent surfaces G = S/Ssurf. 

Frequency dependences of the pulsation sensitivity are shown in Figs. 3 and 4 for detectors with an m 

= i and m = 5 side ratio. The passage from the dimensionless frequencies coL/V c to a~,:-S]~c is accom- 

plished by means of the formulas: 

m = L~/Ly; 

- (oL~ oJ V S -  ml/2. 
V~ V~ 

__ (oLy o) ~ /S m--t/2 
v~ - -  W :  . . . .  (18) 
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It is seen that the detector orientation and shape control its select ivi ty in the s t ream. The pulsation sens i -  
tivity drops more  rapidly when the detector  is oriented with its la rges t  dimension along the s t ream.  The 
effect is magnified if the shape is changed for the same detector surface  a rea  by increas ing the rat io m be-  
tween the longitudinal and t r a n s v e r s e  sides. The pulsation sensit ivity of detectors  with a distribution of 
oscillations is higher than in piston type. The experiment  was conducted under deep sea conditions on a 
floating unit analogous to that described in [2, 12] with detec tors  of different shape, area,  and orientation 
in the s t ream.  

The resul ts  of the experiment [13] agree  with the theory developed above. 

P 
~d 

& 

3- 

T 
U 

V c 
f(x) 
o (~) 
b 
N 

NOTATION 

IS the pressure, N/m2; 
IS the circular frequency, Hz; 
is the spatial separation between two points in the stream, m; 

is the time, sec; 
is the detector sensitivity, V/N/m2; 
is the electrical voltage, V; 
is the velocity of turbulent pulsation transport, m/sec; 
is the shape of the oscillations, m-i; 
is the spatial convolution of the oscillation shapes, m-l; 
is the turbulence wave number, m-z; 
is the coefficient of electromechanical transformation of the transducer. 

Subscripts 

T denotes the value of the parameter in the turbulent stream; 
sf denotes the sound field; 
obs denotes the observed value of the parameter; 
tr  denotes the true value of the parameter .  
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